
A continued-fraction approach for the numerical determination of one-dimensional band

structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1961

(http://iopscience.iop.org/0305-4470/12/11/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 11, 1979. Printed in Great Britain 

A continued-fraction approach for the numerical 
determination of one-dimensional band structures 

J P Vigneron and Ph Lambin 
Institut de Physique, UniversitC de Lihge, B5, B-4000 Sart TilmanlLibge 1, Belgium 

Received 12 July 1978, in final form 12 March 1979 

Abstract. A discretisation scheme is used to obtain a numerical solution of periodic 
one-dimensional Schrodinger equations. Using a continued fraction leads to a very simple 
algorithm for the computation of energy band edges and dispersion laws inside the allowed 
bands. 

1. introduction 

The elucidation of many aspects of the behaviour of solid materials owes much to the 
early discovery of the energy band systems associated with three-dimensional periodic 
potentials. Many of the ideas developed for understanding the quantum mechanics of 
electrons in lattices originate from the consideration of some exactly soluble one- 
dimensional problems (Kronig and Penney 1931, Scarf 1958). Of course, one-dimen- 
sional examples are far from giving a complete account of the variety of situations 
arising when real band structure calculations are carried out. It is not surprising, in that 
respect, that one-dimensional periodic models were disregarded as soon as efficient 
methods for treating three-dimensional cases were developed (see e.g. Callaway 1976). 
However, a Kronig-Penney model has recently been brought back to light with the 
achievement of periodically layer-structured semiconductors by means of the technique 
of molecular beam epitaxy (Dingle 1976, Esaki 1978). The Kronig-Penney model is 
generally applied to such systems, though the real effective potential felt by the 
conduction electrons in the one-dimensional superlattice is sometimes not very 
accurately represented by a square-top function. On the other hand, the rapid 
development of graded mixed semiconductors allows for the preparation of samples 
presenting a wide range of effective potentials, so that many different kinds of 
one-dimensional periodic structures could be prepared. The theoretical treatment of 
such systems obviously needs the consideration of a one-dimensional Schrodinger 
equation corresponding to a general periodic potential. 

The numerical solution of one-dimensional Schrodinger equations is now 
customary. Different approaches are competing. The best known are based on the 
finite-differences method (Hajj er a1 1974) or the finite-elements method (Golub er a1 
1975, Friedman er a1 1978). Recently Raptis and Allison (1978) reported a new 
multi-step method well suited for bound states. In contrast with the radial potential, the 
one-dimensional periodic Schrodinger equation has not received any particular inter- 
est. The aim of this paper is to present a very simple way of solving the band structure 
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problem for any one-dimensional periodic potential. The proposed method does not 
requite the use of a powerful computer. 

In essence, the calculation is similar to the simple (‘pocket calculator’) technique 
described by Killingbeck (1977a, b), designed to determine the energy eigenvalues 
corresponding to bound states. The starting scheme is the well-known difference 
equation 

(1.1) ( $ ( x  + h ) - 2 $ ( x ) +  $ ( x  - h ) ) / h 2  = ( U ( X ) - - E ) $ ( X ) ,  

d2$(x)/dx2= ( u ( x ) - E ) $ ( x )  11.2) 

which models the Schrodinger equation 

with a truncation error proportional to h2.  As pointed out by Gautschi (1967), a close 
relation exists between three-term recursions and continued fractions. The continued 
fraction generated by equation (1.1) will be extensively used to obtain, in a very simple 
way, a very good approximation to the band structure. 

The formalism is described in § 2, where the secular equation is derived. In an 
original way, the alternation of forbidden and allowed energy bands is simply related to 
the variations of a polynomial function of the energy. An analytical expression of the 
dispersion relation is also obtained. This relation exhibits all the symmetry properties 
of the continuous Schrodinger equation. This seems to indicate that the discretising 
technique used in the present approach is particularly well suited for solving the 
problem considered in this paper. 

2. Properties and solution of the discrete periodic equation 

The question of describing the energy spectrum corresponding to a periodical potential 
is twofold: 

(i) at which values of the energy are the allowed band limits located? 
(ii) inside an energy band, what is the dispersion relation between the energy and a 

Bloch wavevector? 
In both cases, the continued fraction approach will provide a very general and 

efficient answer. Let us suppose that the interval (xo ,  x , + ~ )  is a period of the potential 
function v ( x ) .  Inside this interval, let us define the grid x l ,  x 2 ,  . . . , x ,  which divides the 
period into n + 1 equal parts of length 

(2.1) 
Due to the periodicity of the potential, the solution $ ( x )  of the discretised Schrodinger 
equation verifies the Bloch theorem, i.e. can be written as 

(2.2) 

where the function u k ( x )  has the same periodicity as the potential and, for any allowed 

h = (X,+l - x o ) / ( n  + 1). 

+ ( x )  = U& ( X I  eikx, 

energy values, k is a real wavenumber. Then equation (1 1) can be rewritten as 

(2.3) 

where 

b, ( E )  = 2 + h ‘(U (x ,  ) - E ) .  (2.4) 
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If we introduce the notation 

R ,  = e-ikhuk(x,)/uk(x,+l), (2.5) 

equation (2.3) turns out to be a recurrence relation for R,: 

R,-1 = b p ( € ) -  l / R p  (2.6) 

The translational symmetry of uk(x)  gives rise to the conditions 

U k ( X 0 )  = U k ( X f l + l )  

and 

u k  (xO)/uk (x1)  = u k  (&cl)/  uk ( X n c 2 ) .  

This last requirement can readily be expressed as 

Ro= Rn+t. (2.9) 

From the recurrence relations (equation (2.6)), this condition can be expanded by 
means of a continued fraction 

b3(€) -. . . 
(2.10) 

1 
b n + l ( ~ ) -  ~ / R o ’  

It is interesting to realise that this relation does not involve a specific value of the 
wavenumber k. This expression will be the basis for the determination of the allowed 
energy bands without explicitly solving the problem of the band structure. Equation 
(2.10) can be written as a second-degree equation for Ro, 

B f l ( ~ ) R i -  (Bn- i (€ )  +Afl+i(E))Ro+Afl(E) = 0, (2.11) 

in which the polynomials A , ( € )  and & ( E )  are generated by the recurrence relations 
(Wall 1967) 

(2.12) 

(2.13) 

with the following initial values: 

A O ( E )  = 1, A I (€ )  = bi(E), (2.14) 

BO(€)= 1, = b 2 ( E ) .  (2.15) 

The discriminant of the second-degree equation (2.11) will appear as a crucial quantity 
in further developments. By use of the determinant formula (Wall 1967) 

(2.16) A n  k)B, (€1 - A ~ + I ( E ) B , - ~ ( E )  = 1, 
this discriminant is written in the form 

A =  ( A n + l ( E ) - ~ , - ~ ( € ) ) 2 - 4 .  (2.17) 



1964 J P Vigneron and Ph Lambin 

Let us now apply the condition (2.7). It is straightforward that Uk(X0) is related to 
Uk(Xn+1) by the relation 

(2.18) 

where L = xn+1 - X O  is the period of the potential. To impose the periodic condition 
(2.7) then amounts to requiring that 

fi R, = 
p = o  

(2.19) 

It is important to notice that the left-hand side of equation (2.19) depends only on the 
energy E and not explicitly on the wavenumber k. Allowed bands correspond to the 
energy ranges for which some real value of k satisfies equation (2.19). This happens if 
and only if 

1 fi R,l = 1. (2.20) 

We will now show that this condition is equivalent to the requirement that the 

p - 0  

discriminant A of equation (2.11) is nCgative or zero, i.e. 

( A n + l ( € ) - B , - 1 ( ~ ) ) ’ - 4 ~ 0 .  (2.21) 

The proof of this is straightforward if one uses the simple relation 

(2.22) 

demonstrated in the Appendix. Owing to this relation, the left-hand side of equation 
(2.19) is directly connected with the solutions of the second-degree equation (2.1 1). 

When A is strictly negative, both roots of this equation are complex conjugate: 

Ro = A n + i ( ~ )  + Bn-i(6) i[4-(An+l(6)--Bn-1(6))211’2 
2Bn ( E  1 2Bn ( E )  

(2.23) 

These solutions are introduced in equation (2.22) to provide a closed expression for the 
product (2.22) : 

(2.24) 

The polynomial P“+I(E) appearing in this expression is given by 

P n + i ( ~ )  = !dAn+i(~) - Bn -1 (6  )). (2.25) 

The formulation (2.24) explicitly shows that the left-hand side of equation (2.19) 
satisfies equation (2.20). 

Alternatively, if A is strictly positive, both roots of equation (2.11) are real and 

fi R ,  
p = o  

In  this case the product (2.22) is real and different from k l .  

(2.26) 
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If A is equal to zero, i.e. 

one has respectively 
n n R, = *l# 

p = o  
(2.28) 

To summarise, when A is negative or zero, lrI:so Rpl=  1 and the dispersion relation 
(2.19) admits real solutions k: the corresponding energy E is then allowed. Otherwise 
(A>O), rI:=o R, is a real number different from *l, and k can only be imaginary: the 
selected energy level .E is then forbidden. The alternation of allowed and forbidden 
energy bands is closely related to the sign variations of the discriminant A. The band 
edges correspond to the zeros of this discriminant. These can be evaluated by means of 
a standard roots-finder algorithm. One of the best routines presently available is 
described by Forsythe et a1 (1977). The discriminant can easily be computed for any 
value of the energy by means of the recurrence relations (2.12)-(2.15). 

The above discussion answers question (i) that was posed at the opening of this 
section. The answer to question (ii), about the computation of the dispersion law, now 
follows in a straightforward way. Let us first notice that this dispersion relation can be 
restricted to the Brillouin zone extending from k = -T/L to k = T/L. Indeed, the 
right-hand side of equation (2.19) is a periodic function of k with a period 27r/L. 

Similarly, the inversion symmetry of the dispersion law E ( k )  = E(-k) is also 
conserved. This is due to the fact that, for each allowed energy value E, equation (2.1 1) 
has two complex conjugate solutions Ro and R; .  These roots generate from equation 
(2.22) two dispersion relations for the same energy: 

n n Rp(e )  = e-ikL 
p = o  

and 
n n R,* (E) = e-ikL 

p = o  

(2.29) 

(2.30) 

Both relations can be transformed among each other by an inversion in k space. A 
twofold degeneracy is then rediscovered. It corresponds to the opposite directions of 
the travelling waves. In connection with this interpretation, we may notice that the 
discretised form of the current probability at the point x o  is given by 

~ ( x o )  = -(2/h)14(~1)1* Im Ro. (2.31) 

Changing the sign of the imaginary part of the quantity Ro thus inverts the current 
probability. 

Equation (2.19) gives the dispersion relation in the form k = k(E).  However, 
because inside an allowed energy band equation (2.24) is always true, this equation is 
strictly equivalent to the more simple formulation 

COS kL =Pn+l(~). (2.32) 

The band structure calculation only needs the evaluation of the polynomial (2.25) by 
means of the recurrence relations (2.12)-(2.15). 
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3. Examples 

In this section we compare the numerical results obtained by using the method 
described in this paper with an exactly solvable case. The potential considered is 

v ( x )  = 2 cos 2x, (3.1) 

having a period T and leading to the well-known Mathieu equation (Campbell 1955). 
The allowed energy bands are most often referred to as ‘stable regions’ and are quite 
well known. Table 1 compares the values produced by equation (2.21) with the correct 
values of the two lower-energy bands. The number of points in the subdivision has been 
taken equal to 50,100 and 300. It can be noticed that good accuracy is obtained, even if 
the discretisation step is not extremely small. Equation (2.32) has been used to 
determine the dispersion relation. The results are plotted in figure 1 for the lowest 
bands. Comparison of the numerical results with the dispersion relation of the Mathieu 
equation shows that the relative discrepancies are never larger than 5 ~ l O - ~  for a 
subdivision of 50 points. 

Table 1. Comparison of band limits produced by applying relation (2.21) for 50, 100 and 
300 points of subdivision in the case of a periodic potential v ( x )  = 2 cos 2x. €(exact) are 
results based on analytic properties of the Mathieu equation. 

€(exact) ~ ( n  = 50) ~ ( n  = 100) r ( n  = 300) 

Upper 3.917 02 3.911 3.9156 3,9169 
band 1.859 11 1.858 1.8589 1.859 08 

Lower -0.110249 -0.1109 -0.11041 -0.110266 
band -0.455 139 -0.4556 -0.455 27 -0.455 153 

As a second example we have solved the Kronig-Penney equation (figure 2) and 
have reached the same order of accuracy. In this example, care must be paid to the 
potential discontinuities. It can be shown that, in order to keep a uniform convergence 
rate (proportional to h2) ,  the potential at these points must be defined as the arithmetic 
mean of the left and right limiting values. Moreover, the step size h must be such that 
the discontinuities are located on some grid points. 

4. Conclusions 

In this paper a numerical approach for a general periodic one-dimensional Schrodinger 
equation is discussed. This method is based on a discretisation of the derivative 
operator appearing in the Hamiltonian, which reduces the problem to an eigenvalue 
equation for a second-order difference operator. This new problem can easily be 
handled by means of the theory of continued fractions. An equation is provided to 
determine the location and width of the band gaps, and the band structure is obtained as 
an explicit expression of the Bloch wavevector as a function of the energy. Some 
examples have been considered in order to shed some light on the efficiency of the 
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general method. The accuracy obtained is already good for a reasonable number of 
points in the discretisation grid (say 50), and the relative discrepancy with the eigen- 
values of the differential operator decreases in proportion to the second power of the 
step size. This rate of convergence is reasonable for most applications. 

The possibility of computing the wavefunction has not been described explicitly in 
the present paper. This calculation is never really needed for obtaining the energies, 
but, for some physical applications, the wavefunctions can be easily generated from 
relations (2.5), (2.6) and (2.11) for Bloch states, once the energies or band structures 
have been determined. 

It is quite interesting to notice that the discrete approximation conserves the more 
relevant properties of the problem, such as the existence of bands and gaps, the 
periodicity of the energy in k space, or the fact that E(k)  is an even function of k. This 
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Figare 2. Band structure for a Kronig-Penney model. Equation (2.32) has been used with 
n =50. 

seems to indicate that the approach considered here is very well suited to this particular 
situation. 

For the future, many possible extensions of this work can be considered. One of 
them, which seems to be quite straightforward, is the consideration of a variable step in 
the discretisation scheme. This does not affect drastically the basic relation (2.10) 
except that the values of the step sizes xp+l - x p  and x p  - xp- l  will affect the coefficients 
of the continued fraction. However, the choice of the local value of the step for a given 
potential is a delicate question, and designing an adaptative algorithm does not seem 
very easy. 

Perhaps a more straightforward improvement would be to use the Numerov 
discretisation scheme (Numerov 1924) rather than the simple one discussed here. This 
more sophisticated scheme (with a truncation error proportional to h 4 )  is readily 
applicable here. 
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However, the simple method described in this paper has the advantage of being very 
easily implemented. The computation time and storage are so reduced that even most 
common programmable pocket calculators can be used to perform the band structure 
calculation. 
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Appendix 

In this Appendix we prove the relation 

This proof can be reached in two steps. The first one consists of deriving the following 
formula by a recurrence scheme: 

For n = 1 this relation is evident from equation (2.6), and the particular values of A I ( € )  
and AO(e) given by (2.14). If we suppose that equation (A2) is true for n = k - 1, then 
for n = k we can write 

Relation (A2) then follows in a straightforward way from the recurrence relation 
defining the polynomial Ak ( E )  (equation (2.12)). 

The second step will lead to the completion of the proof of equation (Al). The 
recurrence relation (2.6) can be once again used to derive an equivalent form of 
equation (A2): 

The periodic condition (2.9) readily yields 
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Now, Ro satisfies the second-degree equation (2.1 l), which can be written as 

A n + 1  (E)Ro  - A n  ( E )  = (Bn (E)Ro  - Bn-l(E))RO. (A81 
Relation (Al)  is then obvious. 
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